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Abstract. We study the impact of applying stochastic forcing to the Ghil-Sellers energy balance climate model in the form of

a fluctuating solar irradiance. Through numerical simulations, we explore the noise-induced transitions between the competing

warm and snowball climate states. We consider multiplicative stochastic forcing driven by Gaussian and α-stable Lévy -

α ∈ (0,2) - noise laws, and examine the statistics of transition times and most probable transition paths. While the Gaussian

noise case - used here as a reference - has been extensively studied in a plethora of studies on metastable systems, much less5

is known about the Lévy case, both in terms of mathematical theory and heuristics, especially in the case of high- and infinite-

dimensional systems. In the weak noise limit, the expected residence time in each metastable state scales in a fundamentally

different way in the Gaussian vs. Lévy noise case with respect to the intensity of the noise. In the former case, the classical

Kramers-like exponential law is recovered. In the latter case, power laws are found, with the exponent equal to−α , in apparent

agreement with rigorous results obtained for additive noise in a related - yet different - reaction-diffusion equation as well as10

in simpler models. The transition paths are studied in a projection of the state space and remarkable differences are observed

between the two different types of noise. The snowball-to-warm and the warm-to-snowball most probable transition path cross

at the single unstable edge state on the basin boundary. In the case of Lévy noise, the most probable transition paths in the

two directions are wholly separated, as transitions apparently take place via the closest basin boundary region to the outgoing

attractor.15

1 Introduction

1.1 Multistability of the Earth’s Climate

The climate system comprises five interacting subdomains: the atmosphere, the hydrosphere (water in liquid form), the upper

layer of the lithosphere, the cryosphere (water in solid form), and the biosphere (ecosystems and living organisms). The climate

is driven by the inhomogeneous absorption of incoming solar radiation, which sets up nonequilibrium conditions. The system20

reaches an approximate steady state where macroscopic fluxes of energy, momentum, and mass are present throughtout its

domain, and entropy is continuously generated and expelled into the outer space. The climate features variability on a vast

range of spatial and temporal scales as a result of the interplay of forcing, dissipation, feedbacks, mixing, transport, chemical
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reactions, phase changes, and exchange processes between the subdomains; see Peixoto and Oort (1992) Lucarini et al. (2014a),

Ghil (2015), and Ghil and Lucarini (2020).25

In the late 1960s Budyko and Sellers independently proposed that in the current astronomical and astrophysical configuration

the Earth could support two distinct climate states, the present day Warm (W), and a competing one characterised by global

glaciation, which is the Snowball (SB) state. Their analysis was performed using one-dimensional energy balance models

(EBM)s, which, despite their simplicity, were able to capture the essential physical mechanism in action, i.e. the interplay

between two feedbacks associated with the energy exchange among the Earth, the Sun, and the space. The Boltzmann feedback30

is associated with the fact that warmer bodies emit more radiation, and is a negative, stabilizing one. Instead, the instability of

the system is due to the presence of the so-called ice-albedo feedback: an increase in the ice-covered fraction of the surface leads

to further temperature reduction of the planet because ice reflects efficiently the incoming solar radiation. These mechanisms are

active at all spatial scales, including the planetary one; see Budyko (1969) and Sellers (1969). Such pioneering investigations

of the multistability of the Earth’s climate were later extended by Ghil (1976) and Ghil and Childress (1987), who provided a35

comprehensive mathematical framework for the problem based on the study of the bifurcations of the system. The main control

parameter defining the stability properties is the solar irradiance S∗. Below the critical value SW→SB, only the snowball state is

permitted, whereas above the critical value SSB→W , only the warm state is permitted. Such critical values, which determine the

region of bistability, are defined by bifurcations that emerge when, roughly speaking, the strength of the positive, destabilising

feedbacks becomes as strong as the negative, stabilizing feedbacks.40

Only later these predictions were confirmed by actual data. Indeed, geological and paleomagnetic evidence suggests that

during the Neoproterozoic era, between 630 and 715 million years ago, the Earth went at least twice into major long-lasting

global glaciations that can be associated with the SB state; see Pierrehumbert et al. (2011) and Hoffman et al. (1998). Mul-

ticellular life emerged in our planet shortly after the final deglaciation from the last SB state (Gould, 1989). The robustness

and importance of the competition between the Bolzmann feedback and the ice-albedo feedback in defining the global stability45

properties of the climate has been confirmed by investigations performed using higher complexity models (Lucarini et al.,

2010; Pierrehumbert et al., 2011), including fully coupled climate models (Voigt and Marotzke, 2010). While the mechanisms

described above are pretty robust, the concentration of greenhouse gases as well as the boundary conditions defined by the

extent and position of the continents have an impact on the values of SW→SB and SSB→W as well as on the the properties of

the competing states. The presence of multistability has a key importance in terms of determining habitability conditions for50

Earth-like exoplanets; see Lucarini et al. (2013) and Linsenmeier et al. (2015).

Additionally, several results indicate that the phase space of the climate system might well be more complex than the scenario

of bistability described above. Various studies (Lewis et al., 2007; Abbot et al., 2011; Lucarini and Bódai, 2017; Margazoglou

et al., 2021) performed with highly nontrivial climate models report the possible existence of additional competing states, up

to a total of five (Brunetti et al., 2019; Ragon et al., 2021). In Margazoglou et al. (2021) it is argued that, in fact, one can see55

the climate as a multistable system where multistability is realised at different hierarchical levels. As an example, the tipping

points (Lenton et al., 2008; Steffen et al., 2018) that characterise the current (W) climate state can be seen as a manifestation

of a hierarchically lower multistability with respect to the one defining the dichotomy between the W and SB states.
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1.2 Transitions between Competing Metastable States: Gaussian vs Lévy Noise

Clearly, in the case of autonomous systems where the phase space is partitioned in more than one basin of attraction of the corre-60

sponding attractors and the basin boundaries, the asymptotic state of the system is determined by its initial conditions. Things

change dramatically when one includes time-dependent forcing which allows for transitions between competing metastable

states (Ashwin et al., 2012). In particular, following the viewpoint originally proposed by Hasselmann (1976), whereby the

fast variables of the climate system act as stochastic forcings for the slow ones (Imkeller and von Storch, 2001), the relevance

of studying noise-induced transitions between competing states has become apparent (Hänggi, 1986; Freidlin and Wentzell,65

1984).

This viewpoint, where the noise is usually assumed to be Gaussian distributed, has provided very fruitful insight on the mul-

tiscale nature of climatic time series (Saltzman, 2001), and is related to the discovery of phenomena like stochastic resonance

(Benzi et al., 1981; Nicolis, 1982). Metastability is ubiquitous in nature and advancing its understanding is a key challenge in

complex system science at large(Feudel et al., 2018).70

In general, the transitions between competing metastable states in stochastically perturbed multistable systems take place,

in the weak noise limit, through special regions of the basin boundaries, named edge states. The edge states are saddles:

trajectories initialised in the basin boundaries are attracted to them, but there is an extra direction of instability, so that a small

perturbation sends an orbit towards one of the competing metastable states with probability one (Grebogi et al., 1983; Ott,

2002; Kraut and Feudel, 2002; Skufca et al., 2006; Vollmer et al., 2009). In previous papers, we have shown that it is possible75

to construct edge states in high-dimensional climate models Lucarini and Bódai (2017) and to prove that the population of each

metastable state and the statistics of the noise-induced transitions can be understood (Lucarini and Bódai, 2019; Lucarini and

Bódai, 2020; Margazoglou et al., 2021) by considering the nonequilibrium quasi-potential formalism introduced by Graham

(1987) and Graham et al. (1991). In the case the edge state supports chaotic dynamics, we refer to it as Melancholia (M)

state (Lucarini and Bódai, 2017). The local minima and the saddles of the quasi-potential Φ, which generalises the classical80

energy landscape for non-gradient systems, correspond to competing metastable states and to edge states, respectively. The

system is forced by adding a random - Gaussian distributed - component to the solar irradiance, which impacts, in the form of

multiplicative noise, only a small subset of the degrees of freedom of the system. We remark that such choice of the stochastic

forcing does not fully reflect physical realism, as the variability of the solar irradiance has a more complex behaviour (Solanki

et al., 2013). Instead, noise acts as a tool for exploring the global stability properties of the system, and injecting noise as85

fluctuation of the solar irradiance has the merit of impacting the Lorenz energy cycle, thus effecting all degrees of freedom of

the system (Lucarini and Bódai, 2020).

A major limitation of this mathematical framework is the need to rigidly consider Gaussian noise laws, even if considerable

freedom is left as to the choice of the spatial correlation properties of the noise. Following Ditlevsen (1999), it has become

apparent that white noise is not the only meaningful option for trying to model noise-induced transitions in the climate system,90

while, instead, more general classes of α-stable Lévy noise laws might be useful for explaining the observed phenomena.

Lévy processes (Applebaum, 2009; Duan, 2015), described in detail below in Appendix A, provide a powerful framework
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for understanding ultrarapid transitions. Note that the stability parameter α ∈ (0,2], where the α = 2 case corresponds to the

Gaussian case (which is, indeed, a special Lévy process). In what follows, when we discuss Lévy noise laws, we refer to

α ∈ (0,2).95

The proposal by Ditlevsen stimulated mathematical investigations into noise-induced escapes from attractors where as

stochastic forcing one chooses a Lévy, rather than Gaussian, noise (Imkeller and Pavlyukevich, 2006a, b; Chechkin et al.,

2007; Debussche et al., 2013). Such analyses have clarified that a fundamental dichotomy exists with the classical Freidlin and

Wentzell scenario mentioned above, even if phenomena like stochastic resonance can be recovered also in this case (Dybiec

and Gudowska-Nowak, 2009; Kuhwald and Pavlyukevich, 2016). Whereas in the Gaussian case transitions between competing100

attractors occur as a result of the very unlikely combination of many steps all going in the right direction, in the Lévy case,

transitions result from individual, very large and very rare jumps. Recently, Duan and collaborators have made fundamental

progresses in achieving a variational formulation of Lévy noise-perturbed dynamical systems (Hu and Duan, 2020) as well as

in developing corresponding methods for data assimilation (Gao et al., 2016) and data analysis (Lu and Duan, 2020). In terms

of applications, Lévy noise is becoming a more and more a popular concept and tool for studying and interpreting complex105

systems (Grigoriu and Samorodnitsky, 2003; Penland and Sardeshmukh, 2012; Zheng et al., 2016; Wu et al., 2017; Serdukova

et al., 2017; Cai et al., 2017; Singla and Parthasarathy, 2020; Gottwald, 2021).

The contribution (Gottwald, 2021) is especially worth recapitulating because of its methodological clarity. There, the idea

is, following Ditlevsen (1999), to provide a conceptual deterministic climate model able to generate a Lévy-noise-like signal to

describe, at least qualitatively, abrupt climate changes similar to Dansgaard–Oeschger events, which are sequences of periods110

of abrupt warming followed by slower cooling that occurred during the last glacial period (Barker et al., 2011). A key building

block is the idea proposed in Thompson et al. (2017) that a Lévy noise can be produced by integrating the so-called correlated

additive and multiplicative (CAM) noise processes, which are defined starting from standard Gaussian processes. The other

key ingredient is to consider the atmosphere as the fast component in the multiscale model and deduce, using homogeneization

theory (Pavliotis and Stuart, 2008; Gottwald and Melbourne, 2013), that its influence on the slower climate components can be115

closely represented as a Gaussian forcing. Finally, the temperature signal is cast as the integral of a CAM process.

1.3 Outline of the Paper and Main Results

We consider here the Ghil-Sellers Earth’s EBM (Budyko, 1969; Sellers, 1969; Ghil, 1976), a diffusive one-dimensional energy

balance system, governed by a nonlinear reaction-diffusion parabolic partial differential equation. We stochastically perturb the

system by adding random fluctuations to the solar irradiance, therefore the noise is introduced in multiplicative form. We study120

the transitions between the two competing metastable climate states and carry out a comparison of the effect of considering

Lévy vs Gaussian noise laws of weak intensity ε .

The paleoclimatic records indicate that abrupt climate changes like Dansgaard–Oeschger events have a strong non-Gaussian

heavy-tailed distribution and discontinuous càdlàg paths, thus motivating scientists to model noise-induced transitions in the

climate system considering α-stable Lévy process as a source of the stochastic perturbation (Ditlevsen, 1999; Dakos et al.,125

2008; Corral and González, 2019).

4

https://doi.org/10.5194/npg-2021-34
Preprint. Discussion started: 5 November 2021
c© Author(s) 2021. CC BY 4.0 License.



The main challenges of the problem are: a) the fact that we are considering dynamical processes occurring in infinite di-

mensions (Doering, 1987; Duan and Wang, 2014; Alharbi, 2021); and b) the consideration of multiplicative Lévy noise laws

(Løkka et al., 2004; Peszat and Zabczyk, 2007; Debussche et al., 2013). We characterize noise-induced transitions between the

competing climate basins and quantify the effect of noise parameters on them by estimating the statistics of escape times and130

empirically constructing mean transition pathways called instantons.

The results obtained confirm that, in the weak noise limit ε → 0, the mean residence time in each metastable state driven

by Gaussian vs. Lévy noise has a fundamentally different dependence on ε . Indeed, as expected, in the Gaussian case the

residence time grows exponentially with ε−2, thus in basic agreement with the well-known Kramers (1940) lsaw and the

previous studies performed on climate models (Lucarini and Bódai, 2019; Lucarini and Bódai, 2020). Instead, in the case of α-135

stable noise laws, the residence time increases with ε−α . We perform simulations for α = {0.5,1.0,1.5}. The obtained scaling

is in agreement with what is found for low dimensional dynamics (Imkeller and Pavlyukevich, 2006a, b), as well as with the

infinite dimensional stochastic Chafee-Infante reaction-diffusion equation (Debussche et al., 2013) in the case of additive noise.

This might indicate that such scaling laws are more general than what typically considered.

Furthermore, we find clear confirmation that, in the case of Gaussian noise in the weak noise limit, the escape from either140

attractor’s basin takes place through the edge state. Indeed, the most probable paths for both thawing and freezing processes

meet at the edge state and have distinct instantonic and relaxation sections. In turn, for Lévy noise in the weak-noise limit, the

escapes from a given basin of attraction occur through the boundary region closest to the outgoing attractor. Hence, the paths

are very different from the Gaussian case (especially so for the freezing transition) and, somewhat surprisingly, are identical

regardless the value of α considered.145

The rest of the paper is organized as follows. In Section 2 we present the Ghil-Sellers EBM and summarize its most important

dynamical aspects, as well as the steady-state solutions and their stability. The stochastic partial differential equation obtained

by randomly perturbing the solar irradiance in the EBM is given in Subsection 3.1, where we also clarify the mathematical

meaning of the solution of the stochastic partial differential equation. Subsection 3.2 introduces the mean residence time

and most probable transition path between the competing climate states. The numerical methods are also briefly presented.150

In Section 4 we present and discuss our main results. The comparative analysis of the impact of stochastic forcing due to

Gaussian vs Lévy noise is carried out in two directions: taking into account the mean residence time and the mean transition

paths between the attractors. Finally, Appendix A presents a succinct description of α-stable Lévy processes, Appendix B

sketches the derivation of the scaling laws for mean residence times presented in Debussche et al. (2013), and Appendix C

presents a tabular summary of the statistics of the problem.155

2 The Ghil-Sellers energy balance climate model

The Ghil-Sellers EBM is described by an one-dimensional nonlinear, parabolic, reaction-diffusion partial differential equa-

tion (PDE) (1) involving the surface temperature T field and the transformed space variable x = 2φ/π ∈ [−1,1], where
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φ ∈ [−π/2,π/2] is the latitude

C(x)Tt =
4

π2 cos(πx/2)
[cos(πx/2)K(x,T )Tx]x + µQ(x)[1−αa(x,T )]−σT 4[1−m tanh(c3T 6)], (1)160

where C is the effective heat capacity, and T = T (x, t) has boundary and initial conditions as follows

Tx(−1, t) = Tx(1, t) = 0, T (x,0) = T0(x). (2)

The equation does not depend explicitly on the time t. The subscripts t and x refer to partial differentiation. The first term -

DI - on the right hand side of (1) describes the meridional heat transport on the Earth’s surface, where function K(x,T ) is a

combined diffusion coefficient, given by165

K(x,T ) = k1(x)+ k2(x)g(T ), with (3)

g(T ) =
c4

T 2 exp
(
−c5

T

)
. (4)

The empirical functions k1(x) and k2(x) are eddy diffusivities for sensible and latent heat, respectively. The second term - DII

- of (1) describes the heat absorption controlled by the incoming solar radiation Q(x) as modulated by the surface reflectivity

(albedo) αa(x,T ), given by170

αa(x,T ) = {b(x)− c1(Tm +min[T − c2z(x)−Tm, 0])}c, (5)

where the subscript {·}c denotes a cutoff for a generic quantity h defined as

hc =





hmin h≤ hmin,

h hmin < h < hmax,

hmax hmax ≤ h.

(6)

The term c2z(x) in (5) indicates the difference between the sea-level and surface-level temperatures, and b(x) is a tempera-

ture independent empirical function of the albedo. The parametrization given in Eqs. (5)-(6) encodes the positive ice-albedo175

feedback. The relative intensity of the solar radiation in the model can be controlled by the parameter µ .

The last term - DIII - of (1) describes the energy loss to space by outgoing thermal planetary radiation and is responsible for

the negative Boltzmann feedback. It is represented by the product of the Stefan-Boltzmann constant σ and of the emissivity

coefficient 1−m tanh(c3T 6). Such term describes, in a simple yet effective way, the greenhouse effect by reducing infrared

radiation losses. The values of the empirical functions C(x),Q(x),b(x),z(x),k1(x),k2(x) at discrete latitudes and empirical180

constants c1,c2,c3,c4,c5,σ ,m,Tm are taken from Ghil (1976), as modified in Bódai et al. (2015).

In this study, we consider µ = 1.05. For this value of µ , two stable asymptotic states - the W and the SB states - co-exist,

see Figure 1(b), reproduced from Bódai et al. (2015). Indeed, a codimension one manifold separates the basins of attraction of

the W and SB states. We refer to DW (DSB) as the basin of attraction of the W (SB state). We refer to B as the basin boundary,

which includes a single edge state M. Therefore, the system has three stationary solutions TW (x), TSB(x), and TM(x) for the W,185
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Figure 1. (a) Stationary solutions TW (x), TSB(x) and TM(x) in Kelvin (K) of zonally averaged energy-balance model (1). (b) Bifurcation

diagram of the average temperature T as a function of control parameter µ , adapted from Bódai et al. (2015).

SB, and M state, respectively, shown in Figure 1(a). In Ghil (1976) the three stationary solutions were obtained by equating Tt

to 0, and it was shown, through linear stability analysis, that the stationary solutions TW and TSB are stable, while TM is unstable.

In Bódai et al. (2015) the unstable solution TM was constructed using a modified version of the edge tracking algorithm Skufca

et al. (2006).

Following previous studies (Bódai et al., 2015; Lucarini and Bódai, 2019; Lucarini and Bódai, 2020; Margazoglou et al.,190

2021), when visualising our results, we apply a coarse-graining to the phase space of the model. In what follows, we perform

a projection on the plane spanned by the spatially averaged temperature T and the averaged Equator minus Poles temperature

difference ∆T , defined as

T = [T (x, t)]10, (7)

∆T = [T (x, t)]1/3
0 − [T (x, t)]11/3, where (8)195

[T (x, t)]xh
xl

=

∫ xh
xl

cos(πx/2)T (x, t)dx
∫ xh

xl
cos(πx/2)dx

. (9)

Such a representation allows for a minimal yet still physically relevant description of the system. Indeed, changes in the energy

budget of the system (warming versus cooling) are, to a first approximation, related to variations in T , while the large-scale

energy transport performed by the geophysical fluids is controlled by ∆T . The boundary between high and low latitude in (8)

is established at x =±1/3, i.e. at 30◦N/S. Additionally, in some visualizations, we consider as a third coordinate the fraction200

of the surface with a below-freezing temperature (therefore we expect 1 for global glaciation and 0 for no ice). We refer to this

variable as I, and it is an attempt to extract an observable that resembles the sea-ice percentage of the Earth’s surface. Thus, the

stationary solutions TW (x), TSB(x), and TM(x), in terms of ∆T and T , correspond to ∆TW = 16 K, ∆TSB = 8.3 K, ∆TM = 17.5

K; TW = 297.7 K, T SB = 235.1 K, T M = 258 K; and IW = 0.2, ISB = 1, and IM = 1.
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Figure 2. The metastable behavior of solution path of stochastic energy-balance model (10) for ε = 0.04, T0 = 300 K, t ∈ (0,300) years (a)

α = 0.5, (b) α = 1.5 and of (c) temperature average T and (d) temperature contrast at low and high latitudes ∆T for ε = 0.01, α = 0.5,α =

1.5. Red/green/blue dashed-dotted lines portray stationary climate states TW /T M /T SB, respectively.

3 Background and Methodology205

3.1 Stochastic Energy Balance Model.

In order to analyze the influence of random perturbations on the deterministic dynamics of the climate model described in

Section 2, we perturb the relative intensity µ of solar radiation by a symmetric α-stable Lévy process and rewrite Eq. (1) in

the form of the following stochastic partial differential equation (SPDE)

C(x)Tt = DI(x,T ,Tx,Txx)−DIII(T ) +Q(x)[1−αa(x,T )][µ + εL̇α(t)], (10)210

with boundary and initial conditions defined by Eq. (2) where T is the evolving stochastic temperature field.
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Here the parameter ε > 0 controls the noise intensity and (Lα(t)t≥0) is a symmetric α-stable process defined in Appendix A.

As mentioned before, we refer to the Lévy case if the stability parameter α ∈ (0,2), so that we consider a jump process. We

recall that the jumps become more frequent and less intense as α increases.

We define L̇(t) =Q(x)[1−αa(x,T )]L̇α(t), as the generalised derivative of a stochastic process in a suitably defined func-215

tional space. Equation (10) features multiplicative noise. The research interest on this type of SPDEs (Løkka et al., 2004;

Doering, 1987; Peszat and Zabczyk, 2007; Duan and Wang, 2014; Alharbi, 2021) is mainly focused on defining weak, strong,

mild, and martingale solutions, and in specifying under which conditions these solutions exist and are unique, and in construct-

ing numerical approximation schemes for the solutions (Davie and Gaines, 2000; Cialenco et al., 2012; Burrage and Lythe,

2014; Jentzen and Kloeden, 2009; Kloeden and Shott, 2001), among other aspects.220

First let us define the concept of mild solution in this context. Let (Ω,F ,P) be a given complete probability space and

H(∥ · ∥,⟨·, ·⟩) a separable Hilbert space with norm ∥ · ∥ and inner product ⟨·, ·⟩. Equation (10) can be rewritten in the more

general form as follows

Tt = A(x) [E(x,T ) Tx]x +F(x,T )+ εG(x,T )L̇α(t),

Tx(−1, t) = Tx(1, t) = 0, (11)225

T (x,0) = T0(x),

where A,E,F,G are Lipschitz functions defined on [−1,1]×H and G(x,T )L̇α(t) = L̇(t). Under certain assumptions (Yagi,

2009), the problem (11) is formulated as a Cauchy problem whose local mild solution, a progressively measurable process

T (t), for all t ∈ [0, tF ] and T0 ∈ H has the following integral representation

T (t) = Ψ(t)T0 +
t∫

0

Ψ(t− s)ϒ(T (s))ds+ ε
t∫

0

Ψ(t− s)G(T (s))dβ + ε
t∫

0

Ψ(t− s)G(T (s))dγ, (12)230

where the dependence on x is kept implicit and β (γ) is the Poisson random measure (compensated Poisson random measure)

defined through Lévy-Itô decomposition. Ψ(t), t ⩾ 0 is the evolution operator with the generalized semigroup property for

the family of sector operators with the bounded inverses, and ϒ(T ) = T + F(x,T ), T ∈ H is a nonlinear operator, which we

assume Lipschitz to be continuous. Following the abstract theory presented in Yagi (2009), under certain structural assumptions

for the operators Ψ and ϒ and for the functional space, one can prove that the solution (12) is the unique local mild solution235

of Eq. (11). For illustrative reasons, some sample solutions for different values of α , simulated by the spatial discretization

method (Skeel and Berzins, 1990) adapted to SPDEs, are shown in Figure 2 (a)-(b).

3.2 Noise-induced Transitions: Mean residence Times

By incorporating stochastic forcing into the system, its long-time dynamics change significantly, allowing transitions between

the competing basins. This dynamical behaviour is called metastability, and is graphically captured by Figure 2, where in240

plots (a-b) a typical spatio-temporal evolution of the temperature field is shown, for stability parameters α = 0.5 and α = 1.5,

respectively. Instead, in plots (c-d) the temporal noise-induced evolution of global temperature T and the averaged Equator
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and Poles temperature difference ∆T (as defined in Eqs. (7)-(8)) is shown for the same α . In what follows, we investigate the

time statistics and the paths of the transitions between such basins.

In a complete probability space (Ω,F ,P) we define the first exit time τx of a cádlág mild solution T (·;x) of (10) starting at245

x ∈ DW/SB domain of warm/snowball climate stable state as

τx(ω) = inf{t > 0|Tt(ω,x) /∈ DW/SB}, ω ∈Ω, x ∈ H. (13)

The mean residence time is then expressed by E[τx(ω)]. In the case of the infinite dimensional multistable reaction-diffusion

system described by Chafee-Infante equation under the influence of additive infinite-dimensional α-stable Lévy noise - α ∈
(0,2) - it was shown (Debussche et al., 2013) that in the weak-noise limit ε → 0 the mean residence time in one of the competing250

basins of attraction increases as ε−α . For this time scale of ε the jump diffusion system reduces to a finite state Markov chain

with values in the set of stable states. Details of this method are given in Appendix B. Similar results have been obtained for

bistable one-dimensional SDEs (Imkeller and Pavlyukevich, 2006a, b).

As mentioned above, things are radically different for the special case α = 2, which corresponds to Gaussian noise. In

this case, we revisit Eq. (11) and we define L̇α=2(t) = Ẇ (t), where (W (t)t≥0) is a Wiener process. We then define Ẇ(t) =255

G(x,T )Ẇ (t) as the generalised derivative of a Wiener process in a suitably defined functional space. In the weak noise limit,

one can express the statistics of transition times using large deviation laws (Varadhan et al., 1985). While the corresponding

finite dimensional problem is thoroughly documented in the literature (Freidlin and Wentzell, 1984), and has been applied

in a similar context by some of the authors (Lucarini and Bódai, 2019; Lucarini and Bódai, 2020; Ghil and Lucarini, 2020;

Margazoglou et al., 2021), the treatment of infinite dimensional SDEs driven by an infinite dimensional Wiener process via260

the Freidlin-Wentzell theory requires further extension. In the present context, we refer to Budhiraja and Dupuis (2000) and

Budhiraja et al. (2008) and references therein where the problem of an infinite dimensional reaction-diffusion equation driven

by an infinite dimensional Wiener process has been addressed.

We assume that steady state conditions and ergodicity are met, and we also assume that the analysing system is bistable and

a unique edge state is present at the basin boundary, as in the case studied here. One has that the mean residence time in either265

basin of attraction decreases exponentially with increasing noise intensity ε and is given by a generalized Kramers’ law

E[τW/SB(ε)]≈ exp
(

2∆ΦW→M/SB→M(T )
ε2

)
, (14)

where ∆ΦW→M = ΦM(T )−ΦW (T ) is the height of the quasi-potential barrier in the W attractor, and, correspondingly

∆ΦSB→M(T ) = ΦM(T )−ΦSB(T ) is the height of the quasi-potential barrier in the SB attractor, and Φ is the Graham’s quasi-

potential mentioned above (Graham, 1987; Graham et al., 1991).270

3.3 Noise-induced Transitions: Most Probable Transition Paths

In the weak noise limit, the most probable path to escape an attractor is defined by a class of trajectories named “instantons”

(Grafke et al., 2015; Bouchet et al., 2016; Grafke et al., 2017; Grafke and Vanden-Eijnden, 2019) or maximum likelihood
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escape paths (Lu and Duan, 2020; Dai et al., 2020; Hu and Duan, 2020; Zheng et al., 2020).. However, considering different

noise laws result into possibly radically different instantonic trajectories Dai et al. (2020); Zheng et al. (2020).275

In our case, the theory indicates that if the stochastic forcing is Gaussian, under rather general hypothesis, the instanton

will connect the attractor W/SB with the edge state M. Hence, M acts as gateway for noise induced transitions if the noise is

Gaussian. Once the quasi-potential barrier is overcome, a free fall “relaxation” trajectory links M with the competing attractor

SB/W. For equilibrium systems, (e.g. for gradient flows) where detailed balance is achieved, the relaxation and instantonic

trajectories within the same basin of attraction are identical. On the contrary, for non-equilibrium systems, the relaxation280

and instantonic trajectories will differ, and will only meet at the attractor. See a detailed discussion of this aspect and of the

dynamical interpretation of the quasi-potential Φ in Lucarini and Bódai (2020) and Margazoglou et al. (2021). Instead, if the

noise is of Lévy type, the theory formulated for simpler equations suggests that the instanton will connect the attractor with

a region on the basin boundary that is the nearest, in the phase space, to the attractor, as the concept of quasi-potential is

immaterial (Imkeller and Pavlyukevich, 2006a, b; Imkeller and von Storch, 2001).285

In general, the maximum likelihood transition trajectory xM(t) can be defined (Zheng et al., 2020; Lu and Duan, 2020) as

a set of system states at each time moment t ∈ [0, t f ] that maximizes the conditional probability density function p( . | . ; . ) of

passage from the origin stable state φW/SB to the destination stable state φ SB/W and is expressed as

xM(t) = argmax
x

[ p (T (t) = x | T (0) = x0;T (t f ) = x f ) ] =
p (T (t f ) = x f | T (t) = x) · p (T (t) = x | T (0) = x0)

p (T (t f ) = x f | T (0) = x0)
, (15)

where x0 (x f ) belongs to the basin of attraction DW/SB (DSB/W ) and p ( . | . ) is the probability density function evolving290

according to the Fokker-Planck equation (Risken, 1996). This method is applicable either if efficient numerical algorithms

are available to solve the Fokker-Planck equation associated to the studied stochastically driven system, or, empirically, when

considering a large ensemble of simulations. Note that this is not an asymptotic approach, i.e. it does not require a weak noise

limit ε → 0 for its application and is applicable for systems with either Gaussian or non-Gaussian noise. Yet, in the weak-noise

limit, the definition (15) leads to constructing the optimal transition paths described above.295

In the following section, for practical purposes, we construct such optimal transition path in the coarse grained 2D phase

space (T ,∆T ) and 3D phase space (T ,∆T ,I) of the variables defined in Sect. 2 by averaging the ensemble of transitions

connecting the two competing states in the weak noise limit.

3.4 Numerical Methods

We solve Eq. (10) through the Matlab pdepe function, which is well suited for solving 1D parabolic and elliptic PDEs. We300

discretize the 1D space with a regular grid of 201 gridpoints, following Bódai et al. (2015).

The time span of integration t ∈ [0,Tf ], varies for different cases, with Tf ∈ (105,15 ·105) years, with time stepping of one

year. Each year, we consider a different value for the relative solar irradiance by extracting a random number Z j, see Eq. (16).

To simulate the stochastic noise term εLα(t), which is added in the parameter µ in Eq. (10), we use the recursive algorithm
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from Duan (2015). The process values Lα(t1), ...,Lα(tN) at each moment t j, j ∈ N, are obtained via305

Lα(t j) = Lα(t j−1)+(t j− t j−1)
1
α Z j, j = 1, ...,N, (16)

where the second term is an independent increment and Z j are the independent standard symmetric α-stable random numbers

generated by an algorithm in Weron and Weron (1995). See also Grafke et al. (2015) for a detailed explanation of the steps

above. For the numerical simulations discussed below, we consider α = (0.5,1.0,1.5,2) and ε ∈ (0.0001,0.3). We select

ε in such a way that the noise intensity is strong enough to induce at least order of 10 transition, given our constraints in310

the time length of the simulations, and weak enough that we are not far from the weak-noise limit, where the scaling laws

discussed above apply and transitions paths are well-organized. Our simulations are performed taking the Itô interpretation for

the stochastic equations.

We remark that when we consider Lévy noise, it does happen that for some years the solar irradiance has negative values. Of

course these conditions bear no physical relevance. Nonetheless, we have allowed for this to occur in our simulations in order315

to be able to stick to the desired mathematical framework. We remind that this study does not aim at capturing with any high

degree of realism the description of the actual evolution of climate.

4 Results and Discussion

In what follows we aim at addressing three main questions: 1. What is the temporal statistics of the SB →W and W → SB

transitions? 2. What are the typical transition pathways? 3. What are the fundamental differences between transitions caused by320

Gaussian vs. Lévy noise? A summary of the results of the numerical simulations is given in Table A1 in Appendix C, including

sample size, i.e. number of transitions, point estimates for mean escape time and its 0.95-confidence intervals for exits from both

W/SB stable basins. See the Data Availability section for information on how to access the supplementary material (Lucarini

et al., 2021) containing the raw data produced in this study as well as some illustrative animations portraying noise-induced

transitions between the two competing metastable states.325

4.1 Mean Residence Time

Our analysis confirms that there is fundamental dichotomy in the statistics of mean residence times between Lévy noise and

Gaussian noise-induced transitions.

Fig. 3(a) shows the dependence of the mean residence time in either attractor on ε and α for the Lévy case. The red circles

correspond to permanence in the W basin, while the blue squares in the SB basin; see Lucarini et al. (2021) for additional330

details on the practical steps. The predicted scaling Eq. (B6) is shown by the dotted black line for each α . We also portray the

best power law fit of the mean residence time with respect to ε for each value of α; the confidence intervals of the exponent

is shown in Table 1. Our empirical results seem to indicate, at least in this case, an agreement with the ε−α scaling presented

in Eq. (B6) and discussed earlier in the paper. This points at the possibility that the ε−α scaling might apply in more general

conditions than what has been as of yet rigorously proven, and specifically when multiplicative Lévy noise is considered. The335
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Figure 3. Estimates of the mean residence time E(τ) in years inside the W (blue circles) and SB (red squares) states as a function of the noise

intensity ε . (a) Lévy noise for α = 0.5, 1.0, 1.5, with the dotted line being the corresponding prediction from Eq. (B6), while the straight

green (SB) and dashed black (W) are the fittings of Eq. (B6) of the relevant dataset. (b) Gaussian noise, with straight green (SB) and dashed

black (W) being the fit of Eq. (14).

Table 1. Estimates of exponent α via fitting of Eq. (B6) for the Lévy case (three first columns) and of energy barrier ∆ΦW/SB→M via fitting

of Eq. (14) for the Gaussian case (last column). In parenthesis is the estimated error of the last digit.

Lévy Gaussian

α 0.5 1.0 1.5 2

W 0.50(2) 1.00(2) 1.50(1) ∆ΦW→M = 0.068(1)

SB 0.47(2) 0.97(2) 1.52(4) ∆ΦSB→M = 0.048(3)

stochastically perturbed trajectories forced by Lévy noise consist of jumps, and the probability of occurrence of a high jump,

which can trigger the escape from the reference basin of attraction, is polynomially small in noise intensity ε .

The Gaussian case - where no jumps are present - is portrayed in Fig. 3(b). We show in semi-logarithmic scale the mean

residence time versus 1/ε2. We perform a successful linear fit of the logarithm of the mean residence time in either attractor

versus 1/ε2, and using Eq. (14), we obtain an estimate of the local quasi-potential barrier ∆ΦW/SB→M, which is half of the340

slope of the corresponding straight lines of the linear fit; see the last column of Table 1. We conclude that for µ = 1.05 the W

basin of attraction has a deeper minimum of Φ than the SB one.
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4.2 Escape Paths for the Noise-Induced Transitions

We now explore the geometry of the transition paths associated with the metastable behaviour of the system. We first discuss

the case of Gaussian noise because it is indeed more familiar and more extensively studied.345

4.2.1 Gaussian noise

We estimate the transition paths by averaging among the escape plus relaxation trajectories using the run performed with the

weakest noise, see Table A1. We first perform our analysis in the 2D-projected state space defined by (T ,∆T ). We prescribe

two small circular-shaped regions enclosing the two deterministic attractors and search the timeseries of the portions of the

whole trajectory that leave one of such regions and reach the other one. This creates two subsets of our full dataset, from which350

we build a 2D histogram for each of the SB→W and W→SB transitions in the projected space. We then estimate the most

probable transition paths by finding for each bin value of T the peak of histogram in the ∆T direction. The distributions are

very peaked, and almost the same result is obtained by computing the average of ∆T according to the 2D histogram conditional

on the value of T .
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Figure 4. (a) Invariant measure in the 2D-projected state space defined by (T ,∆T ). The colored points indicate the deterministic attractors

of the SB(blue) M(green) and W(red) states and the blue (red) line is the stochastically averaged transition paths for the W → SB (SB→W )

transitions. Dashed (solid) lines are the relaxation (instantonic) trajectories. The arrows show the direction of transitions. Top left inset: The

dark blue (red) contours portray the ensembles of the transition paths between W → SB (SB →W ). Here the system is driven by Gaussian

noise with ε = 0.14. (b) Invariant measure and most probable transition paths (W → SB in blue and SB→W in red) in the 3D-projected state

space defined by (T ,∆T ,I). The darker green shading indicates higher probability density for the corresponding isosurface. A 2D projection

in each plane is shown. The location of the M state is given by a pink square. Here the system is driven by Gaussian noise with ε = 0.16.
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In the background of Fig. 4 (a) we show the empirical estimate of the invariant measure in the 2D-projected state space355

defined by (T ,∆T ). Additionally, we indicate the position of the deterministic attractors, (SB-blue and W-red circles) and of

the M state (green rectangle). In the inset of Fig. 4 (a) we present the ensemble of W→SB (SB→W) transitions as deep blue

(red) contours. The most probable transition paths are shown in blue for the W→SB and in red for the SB→W. The instantonic

portion of the blue (red) line is the one connecting the W (SB) attractor to the M state and is portrayed as a solid line, while

the relaxation portion, connecting the M state with the SB (W) attractor, is portrayed as a dashed line. Within each basin of360

attraction, the instantonic and relaxation trajectories do not coincide, and, instead, only meet at the corresponding attractor and

at the M state. This is particularly clear for the W state. The presence of such a loop is a signature of non-equilibrium dynamics,

which was also observed in Margazoglou et al. (2021) and has, instead, gone undetected in Lucarini and Bódai (2019); Lucarini

and Bódai (2020). See the supplementary material for some illustrative simulations of the transitions.

Let’s provide some physical interpretation of how the transitions occur. Looking at the SB →W most probable path, the365

escape includes a simultaneous increase in (T and ∆T ). In practice, a SB →W transition takes place when, starting at the

SB state, one has a (rare) sequence of positive anomalies in the fluctuating solar irradiance µ̃ , i.e. µ̃ > µ . While the planet

is warming globally, the Equator is warming faster than the Poles, resulting in a positive rate ˙∆T > 0, because it receives,

in relative and absolute terms, more incoming solar radiation. Hence, and considering that the Equator also in the SB state

is warmer than the Poles, the melting of the ice occurs first at the Equator, with a subsequent decrease of the albedo in this370

latitude. Once the system crosses the M state, and supposing that persistent µ̃ < µ do not appear at this stage, the system will

relax towards the W state. The relaxation includes a consistent global warming of the planet, but with a change of sign in the

rate of ˙∆T , and a subsequent decrease of ∆T implying that as soon as the temperature at the Equator has risen enough, the

Poles will then warm at a faster pace, because the ice-albedo effect kicks in. The global freezing of the planet associated with

the W → SB transition is qualitatively similar but not identical to the reverse SB→W process. Notice a considerable overlap375

of the transition paths ensembles in both basins of attraction, shown as red and blue contours in the inset of Fig. 4 (a). This

implies a weakly non-equilibrium system, contrary to Margazoglou et al. (2021), where the W → SB and SB→W transitions

occurred through fundamentally different paths; see discussion therein.

Figure 4 (b) presents the optimal transition paths W → SB and SB →W in a three dimensional projection where we add

as third coordinate the variable I, which indicates the fraction of the surface that has subfreezing temperatures (T < 273.15380

K). One of the 2D projections included in Fig. 4 (b) corresponds to the projection portrayed in Fig. 4 (a). Here, darker green

shadings indicate higher density of points and the red and blue dots sample the highest probability for the SB→W and W → SB

transitions paths, respectively. One could argue that the presence of an intersection between the SB→W and W → SB highest

probability transition paths in Fig. 4 (a) could have been a simple effect of 2D projection. Instead, we see here that the SB→W

and W → SB most probable transition paths also cross in the 3D projection in a well-defined region, which indeed corresponds385

to the M state (pink square).
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Figure 5. Two-dimensional projection of the invariant measure on (T ,∆T ) for different choices of α for Lévy noise; (a) α = 0.5 and

ε = 0.0001, (b) α = 1 and ε = 0.004, (c) α = 1.5 and ε = 0.01. The blue (red) line corresponds to the W→SB (SB→W) most probable

transition path, and the arrows show the direction of transitions. The colored points indicate the deterministic attractors of the SB(blue)

M(green) and W(red) states. In the inset left top corner plot of (a-c) the dark blue (red) contours are the ensembles of the transition paths

between W → SB (SB→W ).

4.2.2 Lévy noise

There is scarcity of rigorous mathematical results regarding the weak-noise limit of the transition paths between competing

states in metastable stochastic systems forced by multiplicative Lévy noise. Indeed, the derivation of analytical results for this

type of systems largely remains an open problem. Recently, for stochastic partial differential equations with additive Lévy390

and Gaussian noise, the Onsager-Machlup action functional has been derived in Hu and Duan (2020), leading to a precise

formulation of the most probable transition paths. Hence, we do not have solid mathematical results to interpret what we

describe below, where, instead, we need to use heuristic arguments. As far as we know, this is the first attempt to estimate the

most probable transition pathway between the metastable states in infinite stochastic systems with multiplicative pure Lévy

process.395

A striking feature in Figure 5 is that the invariant measure and the structure of the most probable transition paths (SB→W

and W→SB), in the weak-noise limit, are fundamentally different between the Lévy case and the Gaussian one. The invariant

measure is highly peaked (dark red in the color scheme) in a small region around the deterministic attractors, as most typically

the Lévy noise fluctuations of µ̃ are very small. Additionally, the most probable transition paths depend very weakly on the

chosen value for the stability parameter α . This suggests that the geometry of most probable path of transitions does not400

depend on the frequency and height of the Lévy diffusion jumps, but rather on the qualitative fact that we are considering a

discontinuous jump process. Note that each panel of Fig. 5 is computed using data coming from the weakest noise considered

for the corresponding value of α .
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Figure 6. Same as Fig. 4 (b), but considering a stochastic forcing driven by a Lévy noise with α = 1.0 and ε = 0.004.

The W → SB most probable transition path is characterized by the simultaneous decrease of both T and ∆T . This implies

that the jump process, causing the transition, leads to a rapid and direct freezing of the whole planet. The path crosses the basin405

boundary very far from the M state. Based on what is discussed in Sec. 3.2, we expect that the transition occurs through the

nearest region to the outgoing attractor in the basin boundary.

The most probable SB →W transition follows, instead, a path that is somewhat similar to the one found for the Gaussian

case. We then argue that the closest region in the basin boundary to SB attractor is in the vicinity of the M state. Note, that,

nonetheless, the similarity between the Gaussian and Lévy case is less prominent when we look at 3D paths; compare Figs. 4(b)410

and 6. Indeed, in the Lévy case the SB→W path misses the M state. Further visual confirmation of the difference between the

Gaussian and Lévy case can be found by looking at the animations included in the supplementary material.

5 Conclusions

It is a well-known that, as a result of the competition between the Boltzmann stabilizing feedback and the ice-albedo desta-

bilizing feedback, under current astronomical and astrophysical conditions the climate system is multistable, as at least two415

competing and distinct climates are present, the W and the SB. More recent investigations indicate that the partition of the

phase space of the climate system might be more complex, as more than two asymptotic states might be present, some of them,

possibly, associated with small basins of attraction.

For deterministic multistable systems the asymptotic state of an orbit depends uniquely on the initial condition, and, specif-

ically, on which basin of attraction it belongs to. The presence of stochastic forcing allows for transitions to occur between420

competing basins, thus giving rise to the phenomenon of metastability. Gaussian noise as a source of stochastic perturbations

has been widely studied by the scientific community in recent years and provided very fruitful insight of the multiscale nature

of the climatic time series. However it has become apparent that more general classes of α-stable Lévy noise laws might also
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be suitable for modeling the observed climatic phenomena. In this regard, it is important to achieve a deeper understanding of

the possible noise induced transitions between competing stable climate states under α-stable Lévy perturbations and compare425

them with the Gaussian case.

As a starting point in this direction, we have studied the influence of different noise laws on the metastability properties of

the randomly forced Ghil-Sellers EBM, which is governed by a nonlinear, parabolic, reaction-diffusion PDE. In the determin-

istic version of the model, we have three steady-state solutions: two stable, attractive climate states and one unstable saddle,

corresponding to the edge state. The stable states corresponds to the well-known W and SB climates. There is a fundamental di-430

chotomy in the properties of the noise-induced transitions determined by whether we consider a stochastic forcing of intensity

ε with a Gaussian versus an α-stable Lévy noise law. Note that, instead, the spatial structure of the noise is unchanged. This

indicates that the phenomenology associated with the metastable behaviour depends critically on the choice of the noise law.

Not many studies have investigated, numerically or through mathematical theory, the properties of transitions in metastable

systems driven by multiplicative Lévy noise, as done here.435

First, in the weak noise limit ε → 0, the mean residence times inside either competing basin of attraction for diffusions

driven by Gaussian vs. Lévy noise have a fundamentally different dependence on ε . Our results show that the logarithm of the

mean residence time for Gaussian diffusions scales with ε−2, while, instead, a much weaker dependence is found for the Lévy

case. Indeed, we find that the mean residence time is proportional to ε−α , where α is the stability parameter of the noise law.

This result is in agreement with what has been proven in some special cases for additive Lévy noise, and might indicate that440

these scaling properties are more general than usually assumed.

Secondly, the results obtained for the most probable transition paths confirm that, in the weak-noise limit, escapes from

basins of attraction driven by Gaussian noise take place through the edge state. Additionally, instantonic and relaxation portions

within each basin of attraction are clearly distinct, indicating nonequilibrium conditions, yet qualitatively similar. In turn, Lévy

diffusions leave the basin through the boundaries region closest to the outgoing attractor, which seems to be the vicinity445

of the edge state when the thawing transition is considered. The freezing transition, instead, proceeds along a path that is

fundamentally different. Finally, the most probable transition paths for the Lévy case appear to depend very weakly on the

value of the stability parameter α , but seem, instead, determined by the nature of the Lévy noise of being a jump process.

Our findings provide strong evidence that choosing noise laws other than Gaussian leads to fundamental changes in the

metastability properties of a system, both in terms of statistics of the transitions between competing basins of attraction and450

most probable paths for such transitions. Leaving the door open for general noise laws might be relevant both for interpreting

observational data and for performing modelling exercises for the climate system and complex systems in general.

Let’s give an example of the impact of making a wrong assumption on the nature of the acting stochastic forcing. Were we

to naively interpret one of the panels of Fig. 5 as resulting from the dynamics of a dynamical system perturbed by Gaussian

noise, we would have to conclude that the unperturbed deterministic system possesses at least two edge states on the basin455

boundary separating the competing basins of attraction; see Margazoglou et al. (2021) for a case where this situation applies.

Hence, we would infer fundamentally wrong properties on the geometry of the phase space.
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We might think of Gaussian noise as being associated to the impact of unresolved scales of motion on the resolved ones

or actual random fluctuations of some external parameter. Instead, one might interpret α-stable Lévy noise as describing

succinctly, the impact of what in the insurance sector are called acts of God (e.g. an asteroid hitting the Earth; a massive460

volcanic eruption; the sudden collapse of the West Antarctic ice sheet). Hence, it might be worth investigating the properties

of systems where the stochastic forcing comes as the result of simultaneous Gaussian and α−stable Lévy noise perturbations.
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Appendix A: Stochastic perturbations of Lévy type.

In this section we revise the basic properties of a symmetric α-stable Lévy process in a Hilbert space in which the solutions

to SPDE (10) are defined. It is pertinent to refer to the distribution law of Lévy increments, its characteristic function, the475

Lévy-Itô decomposition and the Lévy jump measure for a deeper study of the metastable behavior of the stochastic climate

system (10). Let (Ω,F ,P) be a given complete probability space and H(∥ · ∥,⟨·, ·⟩) a separable Hilbert space with norm ∥ · ∥
and inner product ⟨·, ·⟩. A stochastic process (Lα(t)t≥0) is a symmetric α-stable Lévy process in H if it satisfies:

1) Lα(0) = 0, a.s..
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2) Independent increments: for any n ∈ N and 0 ⩽ t1 < t2 < · · ·< tn−1 < tn the vector480

(Lα(t1)−Lα(t0), . . . ,Lα(tn)−Lα(tn−1)) (A1)

is a family of independent random vectors in H.

3) Stationary increments: for 0 ⩽ l < t random vectors Lα(t)−Lα(l) and Lα(t− l) have the same law L(.) in H

L(Lα(t)−Lα(l)) = L(Lα(t− l)). (A2)

4) Sample paths are continuous in probability, i.e. for any t ⩾ 0 and η > 0485

lim
l→t

P(∥Lα(t)−Lα(l)∥> η) = 0. (A3)

Although neither the incremental nor the marginal distribution of a Lévy process in general are representable by the elemen-

tary functions, the Lévy motion is completely determined by the Lévy-Khintchine formula which specifies the characteristic

function of the Lévy process.

If Lα(t) is a symmetric α-stable Lévy process in H, then:490

1) (Lévy-Khintchine formula) Its characteristic function is

Λt(h) = E
[
ei⟨h,Lα (t)⟩

]
= etψ(h), h ∈ H, t ≥ 0,

where

ψ(h) =
∫

H

(
ei⟨h,y⟩−1− i⟨h,y⟩1{0<∥y∥⩽1}

)
ν(dy), (A4)

here 1S is the indicator function for a set S, taking 1 on S and 0 otherwise, and ν is a Borel measure (so called the Lévy jump495

measure) in H for which
∫
H

(1∧∥y∥2)ν(dy) < ∞ with 1∧∥y∥2 = min{1,∥y∥2}. A Borel measure, as well, can be defined as the

expected value of the number of jumps of specified size Q in the unit time interval, i.e. ν(Q) = EN(1,Q)(ω), ω ∈Ω.

2) (Lévy-Itô decomposition) For any sequence of positive radii rn → 0 and On = {y ∈ H | rn+1 < ||y|| ⩽ rn} there exist

a sequence of independent compensated compound Poisson processes (L̄n(t))t⩾0, n ⩾ 0 in H with jump measures νn(B) =

ν(B∩On) for B ∈ B(H) the Borel σ -algebra in H and n ⩾ 1, which satisfy P-almost surely for all t ⩾ 0500

L(t) =
∞

∑
n=1

L̄n +L0(t), (A5)

L̄n(t) = Ln(t)− t
∫

H

yνn(dy), n ⩾ 1. (A6)

3) Its Lévy jump measure ν is symmetric in the sense that ν(−Q) = ν(Q) for Q ∈ B(H) and has the specific geometry

ν(Q) =
∫

Q

ν(dy) =
∫

Q

dr
r1+α σ(ds), (A7)

where r = ∥y∥ and s = y/∥y∥ and σ : B(∂B1(0))→ [0,∞) is an arbitrary finite Radon measure on the unit sphere of H.505

One can come to more intuitive interpretation of the stability parameter α ∈ (0,2) variation: for smaller values of α , the

process is characterized by higher jumps with a lower frequency. As α increases, jumps decrease in height and the frequency

of their occurrence increases.
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Appendix B: Probabilistic theory for the Lévy noise-induced escape.

We briefly recapitulate here the main ideas behind the proof given in Debussche et al. (2013) of how the mean residence time510

in the competing metastable states of stochastically perturbed Chafee-Infante reaction-diffusion PDE scales with the intensity

ε of the additive L(t) α−stable Lévy noise that acts as stochastic forcing.

One proceeds by considering the decomposition of the driving Lévy process with regularly varying jump measure ν into

small ξ ε and large ηε jump components. Let ∆tL = L(t)−L(t−) denote the jump increment of L at time t ⩾ 0, and 1
ερ for

ε , ρ ∈ (0,1) the jump height threshold of L. The process ηε is a compound Poisson process consisting of all jumps of height515

∥∆tL∥> ε−ρ with intensity

βε = ν
(

1
ερ Bc

1(0)
)
≈ εαρ , (B1)

and the jump probability measure outside the ball 1
ερ B1(0) by

ν
(
·∩ 1

ερ Bc
1(0)

)
/βε , (B2)

where B1(0) is the ball in H with center in origin and unit radius. The occurrence time of a k-th large jump is defined recursively520

by

Z0 = 0, Zk = inf{t > Zk−1 | ∥∆tL∥> ε−ρ}, k ⩾ 1. (B3)

The waiting times between sucessive ηε
t jumps have an exponential distribution Zk−Zk−1 ∼ Exp(βε).

Small jump processes ξ ε = L−ηε due to the symmetry of Lévy measure ν is a mean zero martingale in H with finite

exponential moments. Probabilistic events causing small jumps in the stochastic solution of the system are not able to overcome525

the “force” of its deterministic stable state and therefore, do not contribute to the exit from the basin of attraction. Formally,

during the time between two large jumps tk = Zk−Zk−1, the solution of (10) following the deterministic path (1) returns to a

small vicinity of the stable equilibria φW/SB

sup
x∈DW/SB

sup
Zk−1⩽t⩽Zk

∥T (t)−T (t)∥→ 0 for ε → 0. (B4)

When a first large jump occurs, the solution process moves to the neighboring domain of attraction with probability530

P(φW/SB + ε∆tiL /∈ DW/SB) = P
(

∆tiL ∈
1
ε
[(DW/SB)c−φW/SB]

)

=
ν( 1

ε [(DW/SB)c−φW/SB]∩ 1
ερ Bc

1(0))

ν( 1
ερ Bc

1(0))
≈ εα(1−ρ). (B5)

This is the probability that at time ti there will be a jump increment ∆tiL that exceeds the distance between the attractor and

its domain of attraction boundary, expressed by the jump probability measure (B2). In the zero-noise limit the mean residence

time in a basin of attraction is given by535
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E[τ(ε)]≈
∞

∑
i=1

E[Zi] P[inf{ j : φW/SB + ε∆t j L /∈ DW/SB}= i]

≈ E[t1] P(φW/SB + ε∆t1L /∈ DW/SB) ·
∞

∑
i=1

i (1−P[φW/SB + ε∆t1L /∈ DW/SB])i−1

≈ 1
εαρ εα(1−ρ)

(
1

εα(1−ρ)

)2

=
1

εα , (B6)

i.e. by the sum of all the mean values of large jump occurrence time times the probability that the minimum of a sample of

size i of jump increments is sufficiently large to get into the neighboring domain of attraction. Thus, at the random time instant540

of large jumps, the solution process transitions, in an abrupt move, from one attractor to another. Such behavior of the random

dynamical system is known as a metastability.

In Debussche et al. (2013) it was proved that in the time scale λ (ε) = ν( 1
ε Bc

1(0)), ε > 0 the metastable shifting of the diffu-

sion process between neighborhoods of the two attractors represents a continuous time Markov chain in state space {φ SB,φW}
with a transition rate matrix Q545

Q =
1

µ(Bc
1(0))


−µ((DSB−φ SB)c) µ((DSB−φ SB)c)

µ((DW −φW )c) −µ((DW −φW )c)


 , (B7)

where µ(·) is the limit measure of ν .

Appendix C: Estimates for the mean residence time
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(a)
ε 0.0001 0.0003 0.0005 0.0007 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019

No SB→W 74 121 162 193 191 218 239 264 286 307
No W→ SB 74 121 162 194 191 218 239 265 287 307
E [τ SB] 715 457 348 290 299 255 218 216 208 178
CI 0.95 [τ SB] [627,803] [409,504] [298,397] [246,333] [263,335] [222,288] [190,245] [191,241] [185,232] [158,198]
E [τ W] 618 367 265 226 224 203 200 160 139 146
CI 0.95 [τ W] [540,695] [329,404] [221,310] [189,263] [191,256] [177,229] [172,228] [141,179] [124,154] [130,162]

(b)

ε 0.004 0.006 0.01 0.014 0.018 0.022 0.026 0.03 0.034 0.038
No SB→W 35 50 90 121 152 186 224 255 273 328
No W→ SB 35 51 90 121 152 187 224 256 273 329
E [τ SB] 1461 1029 568 388 344 265 249 202 189 160
CI 0.95 [τ SB] [1235,1687] [872,1186] [482,654] [336,441] [306,382] [230,301] [216,281] [178,227] [166,211] [143,176]
E [τ W] 1357 925 531 431 313 270 197 187 177 144
CI 0.95 [τ W] [1124,1589] [782,1067] [461,600] [382,481] [279,347] [232,307] [171,223] [164,211] [156,197] [127,161]

(c)

ε 0.01 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095
No SB→W 5 8 21 37 57 78 118 142 170 231
No W→ SB 5 9 22 37 58 79 118 142 170 231
E [τ SB] 7226 4410 2025 1383 800 629 418 308 282 191
CI 0.95 [τ SB] [5473,8979] [3458,5362] [1526,2525 [1103,1664] [677,923] [529,729] [366,470] [256,361] [242,323] [165,217]
E [τ W] 9544 6199 2418 1249 904 637 425 395 304 241
CI 0.95 [τ W] [7402,11686] [4772,7625] [1877,2959] [1033,1464] [770,1037] [546,727] [363,487] [329,460] [259,350] [207,276]

(d)

ε 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
No SB→W 1 9 27 64 109 155 217 269 360
No W→ SB 1 10 27 64 109 156 217 269 359
E [τ SB] 5038 1838 908 394 307 222 187 137 109
CI 0.95 [τ SB] [2378,7698] [1138,2538] [745,1071] [328,460] [268,345] [198,246] [164,210] [120,154] [99, 119]
E [τ W] 25870 7700 2656 1153 605 418 273 234 168
CI 0.95 [τ W] [15339,36401] [4991,10410] [2121,3191] [942,1364] [524,686] [377,459] [238,308] [208,259] [151,186]

Table A1. Estimates and 95%-confidence intervals for the mean residence time τ in W and SB basins for Lévy noise with (a) α = 0.5, (b)

α = 1.0, (c) α = 1.5, and (d) Gaussian noise. By No we calculate the average number of transitions per 105 years of temporal evolution.
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